• Как построить график функции. Построение графиков функций Постройте график функции y 5x 2

    Функция y=x^2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Общий вид параболы представлен на рисунке ниже.

    Квадратичная функция

    Рис 1. Общий вид параболы

    Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит, что если провести на графике прямую параллельную оси Ох выше это оси. То она пересечет параболу в двух точках. Расстояние от этих точек до оси Оу будет одинаковым.

    Ось симметрии разделяет график параболы как бы на две части. Эти части называются ветвями параболы. А точка параболы которая лежит на оси симметрии называется вершиной параболы. То есть ось симметрии проходит через вершину параболы. Координаты этой точки (0;0).

    Основные свойства квадратичной функции

    1. При х =0, у=0, и у>0 при х0

    2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.

    3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке Решая уравнение \(x"\left(t \right) = 0,\) определяем стационарные точки функции \(x\left(t \right):\) \[ {x"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 2t - 1 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 2 \pm \sqrt {16} }}{6} = - 1;\;\frac{1}{3}.} \] При \(t = 1\) функция \(x\left(t \right)\) достигает максимума, равного \ а в точке \(t = \large\frac{1}{3}\normalsize\) она имеет минимум, равный \[ {x\left({\frac{1}{3}} \right) } = {{\left({\frac{1}{3}} \right)^3} + {\left({\frac{1}{3}} \right)^2} - \left({\frac{1}{3}} \right) } = {\frac{1}{{27}} + \frac{1}{9} - \frac{1}{3} = - \frac{5}{{27}}.} \] Рассмотрим производную \(y"\left(t \right):\) \[ {y"\left(t \right) = {\left({{t^3} + 2{t^2} - 4t} \right)^\prime } } = {3{t^2} + 4t - 4.} \] Находим стационарные точки функции \(y\left(t \right):\) \[ {y"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 4t - 4 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 4 \pm \sqrt {64} }}{6} = - 2;\;\frac{2}{3}.} \] Здесь, аналогично, функция \(y\left(t \right)\) достигает максимума в точке \(t = -2:\) \ и минимума в точке \(t = \large\frac{2}{3}\normalsize:\) \[ {y\left({\frac{2}{3}} \right) } = {{\left({\frac{2}{3}} \right)^3} + 2{\left({\frac{2}{3}} \right)^2} - 4 \cdot \frac{2}{3} } = {\frac{8}{{27}} + \frac{8}{9} - \frac{8}{3} } = { - \frac{{40}}{{27}}.} \] Графики функций \(x\left(t \right)\), \(y\left(t \right)\) схематически показаны на рисунке \(15a.\)

    Рис.15a

    Рис.15b

    Рис.15с

    Заметим, что так как \[ {\lim\limits_{t \to \pm \infty } x\left(t \right) = \pm \infty ,}\;\;\; {\lim\limits_{t \to \pm \infty } y\left(t \right) = \pm \infty ,} \] то кривая \(y\left(x \right)\) не имеет ни вертикальных, ни горизонтальных асимптот. Более того, поскольку \[ {k = \lim\limits_{t \to \pm \infty } \frac{{y\left(t \right)}}{{x\left(t \right)}} } = {\lim\limits_{t \to \pm \infty } \frac{{{t^3} + 2{t^2} - 4t}}{{{t^3} + {t^2} - t}} } = {\lim\limits_{t \to \pm \infty } \frac{{1 + \frac{2}{t} - \frac{4}{{{t^2}}}}}{{1 + \frac{1}{t} - \frac{1}{{{t^2}}}}} = 1,} \] \[ {b = \lim\limits_{t \to \pm \infty } \left[ {y\left(t \right) - kx\left(t \right)} \right] } = {\lim\limits_{t \to \pm \infty } \left({\cancel{\color{blue}{t^3}} + \color{red}{2{t^2}} - \color{green}{4t} - \cancel{\color{blue}{t^3}} - \color{red}{t^2} + \color{green}{t}} \right) } = {\lim\limits_{t \to \pm \infty } \left({\color{red}{t^2} - \color{green}{3t}} \right) = + \infty ,} \] то кривая \(y\left(x \right)\) не имеет также и наклонных асимптот.

    Определим точки пересечения графика \(y\left(x \right)\) с осями координат. Пересечение с осью абсцисс происходит в следующих точках: \[ {y\left(t \right) = {t^3} + 2{t^2} - 4t = 0,}\;\; {\Rightarrow t\left({{t^2} + 2t - 4} \right) = 0;} \]

    1. \({{t^2} + 2t - 4 = 0,}\;\; {\Rightarrow D = 4 - 4 \cdot \left({ - 4} \right) = 20,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 2 \pm \sqrt {20} }}{2}\normalsize = - 1 \pm \sqrt 5 .} \)

    \ \[ {x\left({{t_2}} \right) = x\left({ - 1 - \sqrt 5 } \right) } = {{\left({ - 1 - \sqrt 5 } \right)^3} + {\left({ - 1 - \sqrt 5 } \right)^2} - \left({ - 1 - \sqrt 5 } \right) } = { - \left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \left({1 + 2\sqrt 5 + 5} \right) + 1 + \sqrt 5 } = { - 16 - 8\sqrt 5 + 6 + 2\sqrt 5 + 1 + \sqrt 5 } = { - 9 - 5\sqrt 5 \approx 20,18;} \] \[ {x\left({{t_3}} \right) = x\left({ - 1 + \sqrt 5 } \right) } = {{\left({ - 1 + \sqrt 5 } \right)^3} + {\left({ - 1 + \sqrt 5 } \right)^2} - \left({ - 1 + \sqrt 5 } \right) } = { - \left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \left({1 - 2\sqrt 5 + 5} \right) + 1 - \sqrt 5 } = { - 16 + 8\sqrt 5 + 6 - 2\sqrt 5 + 1 - \sqrt 5 } = { - 9 + 5\sqrt 5 \approx 2,18.} \] Таким же образом находим точки пересечения графика с осью ординат: \[ {x\left(t \right) = {t^3} + {t^2} - t = 0,}\;\; {\Rightarrow t\left({{t^2} + t - 1} \right) = 0;} \]
    1. \({{t^2} + t - 1 = 0,}\;\; {\Rightarrow D = 1 - 4 \cdot \left({ - 1} \right) = 5,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 1 \pm \sqrt {5} }}{2}\normalsize.} \)

    \ \[ {y\left({{t_2}} \right) = y\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \frac{1}{2}\left({1 + 2\sqrt 5 + 5} \right) + 2\left({1 + \sqrt 5 } \right) } = { - \cancel{2} - \cancel{\sqrt 5} + 3 + \cancel{\sqrt 5} + \cancel{2} + 2\sqrt 5 } = {3 + 2\sqrt 5 \approx 7,47;} \] \[ {y\left({{t_3}} \right) = y\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \frac{1}{2}\left({1 - 2\sqrt 5 + 5} \right) + 2\left({1 - \sqrt 5 } \right) } = { - \cancel{2} + \cancel{\sqrt 5} + 3 - \cancel{\sqrt 5} + \cancel{2} - 2\sqrt 5 } = {3 - 2\sqrt 5 \approx - 1,47.} \] Разделим ось \(t\) на \(5\) интервалов: \[ {\left({ - \infty , - 2} \right),}\;\; {\left({ - 2, - 1} \right),}\;\; {\left({ - 1,\frac{1}{3}} \right),}\;\; {\left({\frac{1}{3},\frac{2}{3}} \right),}\;\; {\left({\frac{2}{3}, + \infty } \right).} \] На первом интервале \(\left({ - \infty , - 2} \right)\) значения \(x\) и \(y\) возрастают от \(-\infty\) до \(x\left({ - 2} \right) = - 2\) и \(y\left({ - 2} \right) = 8.\) Это схематически показано на рисунке \(15b.\)

    На втором промежутке \(\left({ - 2, - 1} \right)\) переменная \(x\) возрастает от \(x\left({ - 2} \right) = - 2\) до \(x\left({ - 1} \right) = 1,\) а переменная \(y\) убывает от \(y\left({ - 2} \right) = 8\) до \(y\left({ - 1} \right) = 5.\) Здесь мы имеем участок убывающей кривой \(y\left(x \right).\) Она пересекает ось ординат в точке \(\left({0,3 + 2\sqrt 5 } \right).\)

    На третьем интервале \(\left({ - 1,\large\frac{1}{3}\normalsize} \right)\) обе переменные убывают. Значение \(x\) изменяется от \(x\left({ - 1} \right) = 1\) до \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize.\) Соответственно, значение \(y\) уменьшается от \(y\left({ - 1} \right) = 5\) до \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize.\) Кривая \(y\left(x \right)\) при этом пересекает начало координат.

    На четвертом интервале \(\left({\large\frac{1}{3}\normalsize,\large\frac{2}{3}\normalsize} \right)\) переменная \(x\) возрастает от \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize\) до \(x\left({\large\frac{2}{3}\normalsize} \right) = \large\frac{2}{{27}}\normalsize,\) а переменная \(y\) убывает от \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize\) до \(y\left({\large\frac{2}{3}\normalsize} \right) = - \large\frac{40}{{27}}\normalsize.\) На этом участке кривая \(y\left(x \right)\) пересекает ось ординат в точке \(\left({0,3 - 2\sqrt 5 } \right).\)

    Наконец, на последнем интервале \(\left({\large\frac{2}{3}\normalsize, + \infty } \right)\) обе функции \(x\left(t \right)\), \(y\left(t \right)\) возрастают. Кривая \(y\left(x \right)\) пересекает ось абсцисс в точке \(x = - 9 + 5\sqrt 5 \approx 2,18.\)

    Для уточнения формы кривой \(y\left(x \right)\) вычислим точки максимума и минимума. Производная \(y"\left(x \right)\) выражается в виде \[ {y"\left(x \right) = {y"_x} } = {\frac{{{y"_t}}}{{{x"_t}}} } = {\frac{{{{\left({{t^3} + 2{t^2} - 4t} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} } = {\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}} } = {\frac{{\cancel{3}\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\cancel{3}\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}} } = {\frac{{\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}}.} \] Изменение знака производной \(y"\left(x \right)\) показано на рисунке \(15c.\) Видно, что в точке \(t = - 2,\) т.е. на границе \(I\)-го и \(II\)-го интервалов кривая имеет максимум, а при \(t = \large\frac{2}{3}\normalsize\) (на границе \(IV\)-го и \(V\)-го интервалов) существует минимум. При переходе через точку \(t = \large\frac{1}{3}\normalsize\) производная также меняет знак с плюса на минус, но в этой области кривая \(y\left(x \right)\) не является однозначной функцией. Поэтому указанная точка экстремумом не является.

    Исследуем также выпуклость данной кривой. Вторая производная \(y""\left(x \right)\) имеет вид: \[ y""\left(x \right) = {y""_{xx}} = \frac{{{{\left({{y"_x}} \right)}"_t}}}{{{x"_t}}} = \frac{{{{\left({\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}}} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} = \frac{{\left({6t + 4} \right)\left({3{t^2} + 2t - 1} \right) - \left({3{t^2} + 4t - 4} \right)\left({6t + 2} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{18{t^3} + 12{t^2} + 12{t^2} + 8t - 6t - 4 - \left({18{t^3} + 24{t^2} - 24t + 6{t^2} + 8t - 8} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{\cancel{\color{blue}{18{t^3}}} + \color{red}{24{t^2}} + \color{green}{2t} - \color{maroon}{4} - \cancel{\color{blue}{18{t^3}}} - \color{red}{30{t^2}} + \color{green}{16t} + \color{maroon}{8}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - \color{red}{6{t^2}} + \color{green}{18t} + \color{maroon}{4}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - 6\left({t - \frac{{9 - \sqrt {105} }}{6}} \right)\left({t - \frac{{9 + \sqrt {105} }}{6}} \right)}}{{{{\left({t + 1} \right)}^3}{{\left({3t - 1} \right)}^3}}}. \] Следовательно, вторая производная меняет свой знак на противоположный при переходе через следующие точки (рис.\(15с\)): \[ {{t_1} = - 1:\;\;x\left({ - 1} \right) = 1,}\;\; {y\left({ - 1} \right) = 5;} \] \[ {{t_2} = \frac{{9 - \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,24;}\;\; {y\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,91;} \] \[ {{t_3} = \frac{1}{3}:}\;\; {x\left({\frac{1}{3}} \right) = - \frac{5}{{27}},}\;\; {y\left({\frac{1}{3}} \right) = - \frac{{29}}{{27}};} \] \[ {{t_4} = \frac{{9 + \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,1;}\;\; {y\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,8.} \] Поэтому указанные точки представляют собой точки перегиба кривой \(y\left(x \right).\)

    Схематический график кривой \(y\left(x \right)\) показан выше на рисунке \(15b.\)

    Построение графиков функций, содержащих модули, обычно вызывает немалые затруднения у школьников. Однако, все не так плохо. Достаточно запомнить несколько алгоритмов решения таких задач, и вы сможете без труда построить график даже самой на вид сложной функции. Давайте разберемся, что же это за алгоритмы.

    1. Построение графика функции y = |f(x)|

    Заметим, что множество значений функций y = |f(x)| : y ≥ 0. Таким образом, графики таких функций всегда расположены полностью в верхней полуплоскости.

    Построение графика функции y = |f(x)| состоит из следующих простых четырех этапов.

    1) Построить аккуратно и внимательно график функции y = f(x).

    2) Оставить без изменения все точки графика, которые находятся выше оси 0x или на ней.

    3) Часть графика, которая лежит ниже оси 0x, отобразить симметрично относительно оси 0x.

    Пример 1. Изобразить график функции y = |x 2 – 4x + 3|

    1) Строим график функции y = x 2 – 4x + 3. Очевидно, что график данной функции – парабола. Найдем координаты всех точек пересечения параболы с осями координат и координаты вершины параболы.

    x 2 – 4x + 3 = 0.

    x 1 = 3, x 2 = 1.

    Следовательно, парабола пересекает ось 0x в точках (3, 0) и (1, 0).

    y = 0 2 – 4 · 0 + 3 = 3.

    Следовательно, парабола пересекает ось 0y в точке (0, 3).

    Координаты вершины параболы:

    x в = -(-4/2) = 2, y в = 2 2 – 4 · 2 + 3 = -1.

    Следовательно, точка (2, -1) является вершиной данной параболы.

    Рисуем параболу, используя полученные данные (рис. 1)

    2) Часть графика, лежащую ниже оси 0x, отображаем симметрично относительно оси 0x.

    3) Получаем график исходной функции (рис. 2 , изображен пунктиром).

    2. Построение графика функции y = f(|x|)

    Заметим, что функции вида y = f(|x|) являются четными:

    y(-x) = f(|-x|) = f(|x|) = y(x). Значит, графики таких функций симметричны относительно оси 0y.

    Построение графика функции y = f(|x|) состоит из следующей несложной цепочки действий.

    1) Построить график функции y = f(x).

    2) Оставить ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

    3) Отобразить указанную в пункте (2) часть графика симметрично оси 0y.

    4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

    Пример 2. Изобразить график функции y = x 2 – 4 · |x| + 3

    Так как x 2 = |x| 2 , то исходную функцию можно переписать в следующем виде: y = |x| 2 – 4 · |x| + 3. А теперь можем применять предложенный выше алгоритм.

    1) Строим аккуратно и внимательно график функции y = x 2 – 4 · x + 3 (см. также рис. 1 ).

    2) Оставляем ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

    3) Отображаем правую часть графика симметрично оси 0y.

    (рис. 3) .

    Пример 3. Изобразить график функции y = log 2 |x|

    Применяем схему, данную выше.

    1) Строим график функции y = log 2 x (рис. 4) .

    3. Построение графика функции y = |f(|x|)|

    Заметим, что функции вида y = |f(|x|)| тоже являются четными. Действительно, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), и поэтому, их графики симметричны относительно оси 0y. Множество значений таких функций: y 0. Значит, графики таких функций расположены полностью в верхней полуплоскости.

    Чтобы построить график функции y = |f(|x|)|, необходимо:

    1) Построить аккуратно график функции y = f(|x|).

    2) Оставить без изменений ту часть графика, которая находится выше оси 0x или на ней.

    3) Часть графика, расположенную ниже оси 0x, отобразить симметрично относительно оси 0x.

    4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

    Пример 4. Изобразить график функции y = |-x 2 + 2|x| – 1|.

    1) Заметим, что x 2 = |x| 2 . Значит, вместо исходной функции y = -x 2 + 2|x| – 1

    можно использовать функцию y = -|x| 2 + 2|x| – 1, так как их графики совпадают.

    Строим график y = -|x| 2 + 2|x| – 1. Для этого применяем алгоритм 2.

    a) Строим график функции y = -x 2 + 2x – 1 (рис. 6) .

    b) Оставляем ту часть графика, которая расположена в правой полуплоскости.

    c) Отображаем полученную часть графика симметрично оси 0y.

    d) Полученный график изображен на рисунке пунктиром (рис. 7) .

    2) Выше оси 0х точек нет, точки на оси 0х оставляем без изменения.

    3) Часть графика, расположенную ниже оси 0x, отображаем симметрично относительно 0x.

    4) Полученный график изображен на рисунке пунктиром (рис. 8) .

    Пример 5. Построить график функции y = |(2|x| – 4) / (|x| + 3)|

    1) Сначала необходимо построить график функции y = (2|x| – 4) / (|x| + 3). Для этого возвращаемся к алгоритму 2.

    a) Аккуратно строим график функции y = (2x – 4) / (x + 3) (рис. 9) .

    Заметим, что данная функция является дробно-линейной и ее график есть гипербола. Для построения кривой сначала необходимо найти асимптоты графика. Горизонтальная – y = 2/1 (отношение коэффициентов при x в числителе и знаменателе дроби), вертикальная – x = -3.

    2) Ту часть графика, которая находится выше оси 0x или на ней, оставим без изменений.

    3) Часть графика, расположенную ниже оси 0x, отобразим симметрично относительно 0x.

    4) Окончательный график изображен на рисунке (рис. 11) .

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    1. Дробно-линейная функция и ее график

    Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

    С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

    Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

    y = (ax + b) / (cx + d), то ее называют дробно-линейной.

    Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

    Пример 1.

    y = (2x + 1) / (x – 3).

    Решение.

    Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

    Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

    Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

    Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

    Пример 2.

    Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

    Решение.

    Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

    Для этого разделим числитель и знаменатель дроби на x:

    y = (3 + 5/x) / (2 + 2/x).

    При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

    Пример 3.

    Построить график функции y = (2x + 1)/(x + 1).

    Решение.

    Выделим у дроби «целую часть»:

    (2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

    2 – 1/(x + 1).

    Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

    Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

    Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

    Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

    Ответ: рисунок 1.

    2. Дробно-рациональная функция

    Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

    Примеры таких рациональных функций:

    y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

    Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

    Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

    P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

    L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

    + (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

    + (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

    Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

    Построение графиков дробно-рациональных функций

    Рассмотрим несколько способов построения графиков дробно-рациональной функции.

    Пример 4.

    Построить график функции y = 1/x 2 .

    Решение.

    Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

    Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

    Область значений E(y) = (0; +∞).

    Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

    Ответ: рисунок 2.

    Пример 5.

    Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

    Решение.

    Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

    y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

    Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

    Ответ: рисунок 3.

    Пример 6.

    Построить график функции y = (x 2 – 1)/(x 2 + 1).

    Решение.

    Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

    y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

    Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

    Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

    Ответ: рисунок 4.

    Пример 7.

    Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

    Ответ: рисунок 5, max y(x) = ½.

    Остались вопросы? Не знаете, как строить графики функций?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.