• Pv- и Ts- диаграммы, их свойства. Использование в инженерных расчетах TS-, Pv- и hs-диаграмм состояния водяного пара


    Работа расширения равна нулю, т.к. dv=0.

    Количество теплоты, подведенной к рабочему телу в процессе 1 2 при c v =const, определяется из соотношений

    При переменной теплоемкости

    где -средняя массовая изохорная теплоемкость в интервале температур от t 1 до t 2.

    Т.к. l=0, то в соответствии с первым законом термодинамики и

    при c v =const;

    при с v =var.

    Поскольку внутренняя энергия идеального газа является функцией только его температуры, то формулы справедливы для любого термодинамического процесса идеального газа.

    Изменение энтропии в изохорном процессе определяется по формуле:

    ,

    т.е. зависимость энтропии от температуры на изохоре при c v =const имеет логарифмический характер.

    Изобарный процесс- это процесс, протекающий при постоянном давлении. Из уравнения состояния идеального газа следует, что при p=const находим , или

    ,

    т.е. в изобарном процессе объем газа пропорционален его абсолютной температуре. На рисунке изображен график процесса

    Рис. Изображение изобарного процесса в p, v- и T, s-координатах

    Из выражения следует, что .

    Так как и , то одновременно .

    Количество теплоты, сообщаемое газу при нагревании (или отдаваемое им при охлаждении), находим из уравнения

    ,

    Средняя массовая изобарная теплоемкость в интервале температур от t 1 до t 2 ; при c p =const .

    Изменение энтропии при c p =const согласно равно , т.е. температурная зависимость энтропии при изобарном процессе тоже имеет логарифмический характер, но поскольку с p >c v , то изобара в Т-S- диаграмме более полого, чем изохора.

    Изотермический процесс - это процесс, протекающий при постоянной температуре. или , т.е давление и объем обратно пропорциональны друг другу, так что при изетермическом сжатии давление газа возрастает, а при расширении падает.

    Работа процесса

    Так как температура не меняется то и вся подводимая теплота превращается в работу расширения q=l.

    Изменение энтропии равно

    Адиабатный процесс. Процесс, про­исходящий без теплообмена с окружающей средой, называется адиабатным , т. е. .

    Для того чтобы осуществить такой процесс, следует либо теплоизолировать газ, т. е. поместить его в адиабатную оболочку, либо провести процесс настолько быстро, чтобы изменение температуры газа, обусловленное его теплообменом с окружающей средой, было пренебрежимо мало по сравнению с изменением температуры, вызванным расширением или сжатием газа. Как правило, это возможно, ибо теплообмен происходит значительно медленнее, чем сжатие или расширение газа.



    Уравнения первого закона термодинамика для адиабатного процесса принимают вид: c p dT - vdp = 0; c o dT " + pdv = 0. Поделив первое уравнение на второе, получим

    После интегрирования получим или .

    Это и есть уравнения адиабаты идеального газа при постоянном отношении теплоемкостей (k = const). Величина

    называется показателем адиабаты . Подставив c p = c v +R, получим k=1+R/c v

    Величина k также не зависит от температуры и определяется числом степеней свободы мо­лекулы. Для одноатомного газа k =1,66, для двухатомного k = 1,4, для трех-и многоатомных газов k = 1,33.

    Поскольку k > 1, то в координатах р, v (рис. 4.4) линия адиабаты идет круче линии изотермы: при адиабатном расширении давление понижается быстрее, чем при изотермическом, так как в процессе расширения уменьшается температура газа.

    Определив из уравнения состояния, написанного для состояний 1 и 2, отношение объемов или давлений и подставив их, получим уравнение адиабатного процесса в форме, выражающей зависимость температуры от объема или давления

    ,

    Любой процесс можно описать в p, v-координатах уравнением подбирая соответствующее значение n. Процесс, описываемый этим уравнением, называется политропным.

    Для данного процесса n является величиной постоянной.

    Из уравнений можно получить

    , , ,

    На рис. 4.5 показано взаимное расположение на р, v- и Т, s-диаграммах политропных процессов с разными значениями показателя политропы. Все процессы начинаются в одной точке («в центре»).


    Изохора (n= ± оо) делит поле диаграммы на две области: процессы, находящиеся правее изохоры, характеризуются положительной работой, так как сопровождаются расширением рабочего тела; для процессов, расположенных левее изохоры, характерна отрицательная работа.

    Процессы, расположенные правее и выше адиабаты, идут с подводом теплоты к рабочему телу; процессы, лежащие левее и ниже адиабаты, протекают с отводом теплоты.

    Для процессов, расположенных над изотермой (n = 1), характерно увеличение внутренней энергии газа; процессы, расположенные под изотермой, сопровождаются уменьшением внутренней энергии.

    Процессы, расположенные между адиабатой и изотермой, имеют отрицательную теплоемкость, так как dq и du (а следовательно, и dT), имеют в этой области противоположные знаки. В таких процессах |/|>|q!, поэтому на производство работы при расширении тратится не только подводимая теплота, но и часть внутренней энергии рабочего тела

    7.Какой процесс остается неизменным в адиабатном процессе и почему?

    Адиабатный процесс -это процесс протекающий без теплообмена с окружающей средой

    Под энтропией тела можно понимать величину, изменения которой в любом элементарном термодинамическом процессе равно отношению внешнего тепла , участвующий в этом процессе, к абсолютной температуре тела , dS=0, S=сonst

    Энтропия –это термодинамический параметр системы, j характеризует степень порядка в системе.

    Для адиабатного процесса, протекающего без теплообмена газа с внешней средой (dq=0)

    S 1 =S 2 =S=const, т.к. в этом процессе q=0, то , адиабатный процесс в T-S диаграмме изображается прямой линией.

    (является качественной характеристикой процесса преобразования).

    В уравнении абсолютная температура Т величина всегда положительная, тогда и имеют одинаковые знаки, т.е если положительно, то положительно, и наоборот. Таким образом в обратимых процессах с подводом тепла ( >0) энтропия газа увеличивается, а в обратимых с отводом тепла уменьшается- это важное свойство параметра S.

    Изменение энтропии зависит лишь от начального и конечного состояния рабочего тела.

    8.Что такое энтальпия? Как изменяется энтальпия в процессе дросселирования идеального газа?

    Энтальпия (теплосодержание, от греч. нагревать)

    Энтальпия - это сумма внутренней энергии газа и потенциальной энергии, давления

    обусловленное действием внешних сил.

    где U-внутренняя энергия 1 кг газа.

    PV-работа проталкивания, при этом Р и V соответственно давление и удельный объём при температуре, для которой определена внутренняя энергия.

    Энтальпию измеряют в тех же единицах, что и внутреннюю энергию (кДж/кг или

    Энтальпия идеального газа определяется следующим способом:

    Так как входящие в нее величины являются функциям состояния, то и сама энтальпия является функцией состояния. Так же как внутренняя энергия, работа и теплота, она измеряется в джоулях (Дж).

    Энтальпия обладает свойством аддитивности Величина

    называемая удельной энтальпией (h=Н/М), представляет собой энтальпию системы содержащей 1 кг вещества, и измеряется в Дж/кг.

    Изменение энтальпии. в любом процессе определяется только начальным и конечным состояниями тела и не зависит от характера процесса.

    Физический смысл энтальпии выясним на следующем примере. Рассмотрим

    расширенную систему, включающую газ в цилиндре и поршень с грузом общим весом в (рис. 2.4). Энергия этой системы складывается из внутренней энергии газа и потенциальной энергии поршня с грузом в поле внешних сил: если давление системы сохраняется неизменным, т. е. осуществляется изобарный процесс (dp=0), то

    т. е. теплота, подведенная к системе при постоянном давлении, идет только на изменение энтальпии данной системы.

    9.Первый закон термодинамики и его записи через внутреннюю энергию и энтальпию?

    Первый закон термодинамики является приложением закона сохранения и превращения энергии к тепловым явлениям. Напомним, что сущность закона сохранения и превращения энергии, являющегося основным, законом естествознания, состоит в том, что энергия не создаётся из ничего и не исчезает бесследно, а превращается из одной формы в другую в строго определённых количествах. Энергия вообще - это свойство тел, при определённых условиях совершающее работу.

    Под внутренней энергией будем понимать энергию хаотического движения молекул и атомов, включающую энергию поступательного, вращательного и колебательного движений как молекулярного, так и внутримолекулярного, а также потенциальную энергию сил взаимодействия между молекулами. Внутренняя энергия это функция состояния

    где М-масса, кг

    с-теплоемкость, кДж/кгК

    с р -теплоемкость при при постоянном давлении (изобарная)=0,718 кДж/кгК

    с v - теплоемкость при при постоянном объеме (изохорная)=1,005 кДж/кгК

    Т-температура, 0 С

    11.Как определить среднюю в интервале температур t 1 и t 2 теплоемкость по табличным значениям от 0 0 до t 1 0 C и до t 2 0 C соответственно. Чему равна теплоемкость в адиабатическом процессе?

    или

    В адиабатном процессе теплоемкость равна 0, так как нет обмена с окружающей средой.

    12.Соотношение между теплоемкостями идеального газа при Р=const и V= const. Чему равна теплоемкость кипящей воды?

    Уравнение Майера , для идеального газа

    Для реального газа ,

    где R-газовая постоянная численно равная работе расширения одного кг газа в изобарных условиях при нагреве на 1 0 С

    В процессе v= сonst теплота, сообщаема газу, идет лишь на изменение его внутренней энергии, тогда при процессе р= сonst теплота расходуется на увеличение внутренней энергии и на совершение работы против внешних сил. Поэтому с р больше с v на величину этой работы.

    k=c p /c v -показатель адиобаты

    Кипение Т=const поэтому по определению теплоемкость кипящей воды бесконечность.

    13. Дайте одну из формулировок 2-го закона термодинамики? Приведите его математическую запись.

    2 закон термодинамики устанавливает качественную зависимость, т.е. определяет направление реальных тепловых процессов и условие преобразования теплоты в работах.

    2 закон термодинамики: Теплота не может самостоятельно переходить от более холодного к более нагретому (без компенсации)

    Для осуществления процесса перевода теплоты в работу необходимо иметь не только горячий источник, но и холодный, т.е. необходим температурный перепад.

    1.Освальд: вечный двигатель второго рода невозможен.

    2.Томсон: невозможно периодическое действие теплового двигателя единственным результатом работы которого было бы отнятие теплоты от некоторого источника

    3.Клаузиус: невозможен самопроизвольный нескомпенсировнный переход тепла от тел с температурой к телам с более высокой темпертурой.

    Математическая запись 2-го рода для обратных процессов: или

    Математическая запись 2-го рода для необратимых процессов:

    РЕАЛЬНЫЕ ГАЗЫ

    ЛЕКЦИЯ 7

    Сопло Лаваля

    Проведенный анализ касался течения газа через суживающееся сопло. Из него не следует делать вывод о том, что вообще не возможно, например, при адиабатном течении получить скорость потока выше звуковой.

    Как следует из уравнения (10.1), для перехода в область сверхзвуковых скоростей необходимо иметь расширяющийся канал. Следовательно, дополняя суживающийса канал, где газ достигает критической скорости, расширяющимся, мы предоставляем газу возможность продолжить свое расширение и приобрести сверхзвуковую скорость. Такое комбинированное сопло называется соплом Лаваля (рис. 4).

    Сопло Лаваля целесообразно применять лишь при . Скорость истечения, например, при адиабатном течении определится с помощью уравнения (14). Расход определится по минимальному сечению, где имеет место кризис течения. Для этого используется уравнение для определения , в которое следует подставлять вместо f минимальное сечение сопла f min .


    В ряде случаев приходится иметь дело с системами, состояние которых не позволяет использовать модель идеального газа. В качестве примера можно назвать водяной пар в тех состояниях, при которых он используется в паросиловых установках.

    Здесь приходится принимать во внимание, что молекулы имеют определенные размеры и между ними существуют силы взаимодействия: притяжение при сравнительно больших расстояниях между молекулами и отталкивание при сближении молекул на малые расстояния.

    Модель реального газа представляется в виде твердых шариков диаметром d 0 , взаимно притягивающихся друг к другу.

    Как видно, модель реального газа отличается от модели идеального газа, во-первых, тем, что сами молекулы имеют некоторый объем, во-вторых, наличием сил межмолекулярного сцепления.

    В общем случае, это приводит к тому, что в отличие от идеального газа

    и при T = const

    Устройство pv – диаграммы реального газа

    Впервые подробное экспериментальное исследование зависимости p от v в разных изотермических процессах сжатия реального газа провел на углекислоте в 1857 – 1969 г.г. английский физик Эндрюс. Результаты его экспериментов показаны на рис. 1.

    Как видно, при температурах, меньших , изотермическое сжатие углекислоты (СО 2) вначале сопровождается ростом давления. В точке а начинается процесс конденсации. Состояние, отвечающее этой точке, называют сухим насыщенным паром . При продолжении изотермического сжатия давление остается постоянным, а уменьшение объема сопровождается тем, что все большее количество пара превращается в жидкость.



    Наконец, в точке b конденсация завершается, и рабочее тело представляет собой кипящую жидкость. На участке ab одновременно существует и жидкая и газообразная фазы. Состояния, характеризуемые точками на ab , называют влажным насыщенным паром .

    Соотношение между паровой и жидкой фазой характеризуют степенью сухости пара - это массовая доля сухого насыщенного пара во влажном. Степень сухости пара определяется выражением

    где m n и m ж – соответственно масса пара и жидкости во влажном насыщенном паре.

    Удельный объем сухого насыщенного пара обозначают (точка а ), а кипящей жидкости – (точка b ).

    Рис. 1. PV – диаграмма реального газа

    При продолжении изотермического сжатия в области v < v" отмечается резкое возрастание давления, так как жидкость обладает малой сжимаемостью.

    С ростом температуры разность (v" - v" ), быстро убывает за счет интенсивного уменьшения v" и некоторого роста v" , т.е. с ростом температуры уменьшается разница между плотностями жидкой и газовой фаз.

    Уменьшение (v" - v" ) продолжается вплоть до температуры Т кр , когда эта разность обращается в нуль (точка К ), т.е. в этой точке исчезает различие между плотностями жидкости и пара. Точка К , отвечающая этому состоянию, называется критической точкой . Соответственно давление, температура и удельный объем называются критическими (р кр, Т кр, v кр ). Естественно, что все попытки обеспечить путем изотермического сжатия сжижение газа при Т > Т кр , обречены на неудачу.

    Критической температуре можно дать молекулярно-кинетическое толкование. Объединение свободнодвижущихся молекул в каплю, жидкости при сжижении газа происходит исключительно под действием сил взаимного притяжения. Этому препятствует кинетическая энергия движения молекул, равная с среднем kT (k – постоянная Больцмана). Очевидно, объединение молекул в каплю может произойти лишь при том условии, что кинетическая энергия движения молекул, пропорциональная Т , меньше или равна потенциальной энергии из взаимного притяжения (u o ). Если кинетическая энергия больше потенциальной энергии взаимного притяжения, то конденсация жидкости при изотермическом сжатии не сможет произойти. Сопоставление этих положений с результатом анализа диаграммы Эндрюса позволяет сделать вывод о том, что Т кр – температура, соответствующая равенству указанных энергий

    Если , то и конденсация при изотермическом сжатии возможна.

    Если , то и конденсация при изотермическом сжатии не возможна.

    1. Область левее нижней пограничной кривой KI – это область некипящей жидкости.

    2. Линия KI - это геометрическое место точек начала парообразования или конца конденсации. Иначе эту линию называют нижняя пограничная кривая . Степень сухости на нижней пограничной кривой равняется нулю (x = 0 ), а состояние вещества кипящая жидкость.

    3. Область между KI и KII - область влажного насыщенного пара.

    Это смесь сухого насыщенного пара с каплями жидкости (туманообразное состояние). Это двухфазное состояние.

    Для того чтобы превратить 1 кг жидкости в пар, надо сообщить ей какое-то количество теплоты. Эту величину называют удельной теплотой парообразования r , кДж/кг.

    4. Линия KII - это геометрическое место точек конца парообразования или начала конденсации. Линию KII иначе называют верхняя пограничная кривая . Степень сухости на верхней пограничной кривой равняется единице (x = 1 ), а состояние вещества сухой насыщенный пар .

    Насыщенный пар - это пар, находящийся в динамическом равновесии с жидкостью.

    5. Точка К - критическая точка.

    6. Область правее и выше верхней пограничной кривой – это область перегретого пара.

    Читайте также:
    1. A) Сервис Параметры Вид Отображать Строка состояния команд меню
    2. I. Декларация-заявка на проведение сертификации системы качества II. Исходные данные для предварительной оценки состояния производства
    3. А1. УЧЕТ ФАКТОРА ВРЕМЕНИ В ФИНАНСОВО-ЭКОНОМИЧЕСКИХ РАСЧЕТАХ. НАРАЩЕНИЕ И ДИСКОНТИРОВАНИЕ
    4. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
    5. Анализ движения, технического состояния и эффективности использования основных средств
    6. Анализ использования чистой прибыли проводится с использованием метода вертикального и горизонтального анализа, для чего показатели группируются в таблицу, подобную таблице 20.
    7. Анализ показателей движения, состояния и использования ОС.
    8. Анализ состояния и использования ОПФ.Показатели использования средств труда

    Водяной пар получают в паровых котлах, различных по конструк­ции и производительности. Процесс парообразования в котлах обычно происходит при постоянном давлении, т.е. при p = const.

    Pv-диаграмма.

    Рассмотрим особенности процесса парообразования. Предположим, что 1 кг воды при температуре 0°С находится в цилиндрическом сосуде с поршнем, на который действует груз, обусловливающий давление p 1 (рис.1.) . При температуре 0°С принятое количество воды занимает объем v 0 . На диаграмме р-v (рис.2) это состояние воды отобразится точкой а 1 . Начнем постепенно, сохраняя неизменным давление р 1 , нагревать воду, не снимая с нее поршня и груза. Температура ее при этом будет повышаться, а объем незначительно возрастать. При некоторой темпе­ратуре t н1 (температура кипения) вода закипит.

    Дальнейшее сообщение тепла не повышает температуру кипящей воды, однако оно вызывает постепенное превра­щение воды в пар до тех пор, пока вся вода не испарится и в сосуде не останется один пар. Начало процесса кипения – объем v’ 1 ; состояние пара – v 1 ’’. Процесс нагрева во­ды от 0 до t н1 будет отображаться на диаграмме изобарой а 1 - v’ 1 .

    Обе фазы - жидкая и газообразная - в каждый данный момент на­ходятся во взаимном равновесии. Пар, находящийся в равновесии с жидкостью, из которой он обра­зуется, называют насыщенным паром ; если он не содержит жид­кой фазы, его называют сухим насыщенным ; если же он содержит в себе и жидкую фазу в виде мелкодисперсных частиц, то его называют влажным насыщенным и просто насыщенным паром.

    Чтобы судить о содержании во влажном паре воды и сухого насы­щенного пара, в термодинамике применяют понятие о степени су­хости или просто сухости пара. Под степенью сухости (сухостью) пара понимают массу сухого пара, содержащегося в единице массы влажно­го пара, т. е пароводяной смеси. Степень сухости пара обозначают бук­вой х и она выражает долю сухого насыщенного пара во влажном паре. Очевидно, величина (1-х) представляет собой массу воды в единице мас­сы пароводяной смеси. Эту величину называют влажностью пара . По мере парообразования величи­на степени сухости пара возрастет от 0 до 1, а влажность пара умень­шается от 1 до 0.

    Продолжим рассмотрение процесса. Если сухому насыщенному па­ру, занимающему в сосуде объем v 1 ", продолжать сообщать тепло, то при неизменном давлении температура его и объем будут возрастать. Повышение температуры пара сверх температуры насыщения называют перегревом пара . Перегрев пара определяется разностью темпера­тур перегретого и насыщенного пара, т.е. величиной ∆t = t - t н1 . На рис. 1, г показано положение поршня, при котором пар перегрет до температуры, которой соответствует удельный объем v 1 . На р-v диаграмме процесс перегрева пара отобра­жается отрезком v 1 "- v 1 .



    T-s диаграмма.

    Рассмотрим, как отображаются процессы нагрева воды, парообразования и перегрева пара в системе координат T-s, называемой T-s диаграммой.

    Для давления р 1 (рис.3) кривая нагрева воды от 0 ºС ограничивается отрезком а-b 1 , на котором точка b 1 соответствует температуре кипения t н1 . По достижении этой температуры процесс парообразования из изобарного переходит в изобарно-изотермический, который на T-s диаграмме отображается горизонтальной линией.

    Очевидно, для давлений p 2 < p 3 < p 4 и т.д., превышающих p 1 , точ­ки b 2 , b 3 , b 4 и т.д., располагающиеся на ниж­ней пограничной кривой а-Ки соответствующие температурам ки­пения t н2 , t н3 , t н4 (на рисунке показаны соответствующие абсолютные температуры), будут помещаться выше точки b 1 и притом тем выше, чем больше давление, при котором происходит процесс нагрева воды.



    Длины отрезков b 1 -с 1 , b 2 -с 2 , b 3 -с 3 и т.д., харак­теризующие изменения энт­ропии в процессе парообразования, определяются величиной r/T н.

    Точки с 2 , с 3 , с 4 и т. д., ото­бражающие окончание про­цесса парообразования, в со­вокупности образуют верх­нюю пограничную кривую с 1 -К.Обе пограничные кривые сходятся в критической точке К.

    Область диаграммы, заключенная между изобарой а-с и по­граничными кривыми, соответствует различным состояниям влажного пара.

    Линия а-а 2 отоб­ражает процесс парообразования при давлении, превышающем критическое. Точки d 1 , d 2 и т.д. на кривых перегрева пара определяются тем­пературами перегрева (Т 1 , Т 2 и т.д.).

    Площади, расположенные под соответствующими участками этих линий, выражают количество тепла, сообщен­ного воде (или пару) в этих процессах. Сообразно с этим, если пренебречь величиной pv 0 , то применительно к 1 кг рабочего тела площадь а-b 1 -1-0соответству­ет величине h", площадь b 1 -с 1 -2-1– величине rи площадь с 1 -d 1 -3-2 величине q = c рт (t 1 – t н). Суммарная площадь а-b 1 -с 1 -d 1 -3-0 соответствует сумме h" + r + c рт (t 1 – t н) = h, т. е. энтальпии пара, перегрето­го до температуры t 1 .

    Диаграмма h-S водяного пара.

    Для практиче­ских расчетов обычно пользуются h-S диаграммой водяного пара. Диаграмма (рис.4) представляет собой график, построен­ный в системе координат h-S, на котором нанесен ряд изобар, изохор, изотерм, пограничные кривые и линии постоянной степени сухости пара.

    Эта диаграмма строится следующим образом. Задаваясь для дан­ного давления различными значениями энтропии, по таблицам находят соответствующие значения энтальпии и по ним в системе координат h-Sв масштабе строят по точкам соответствующую кривую давления - изобару. Поступая далее таким же образом, строят изобары для других давлений.

    Пограничные кривые строят по точкам, находя для различных дав­лений по таблицам значения s" и s" и соответствующие им значе­ния h"и h".

    Чтобы построить изотерму для какой-либо температуры, нужно найти по таблицам ряд значений h и Sдля различных давлений при вы­бранной температуре.

    Изохоры на диаграммах T-s и h-S наносят, пользуясь таблицами пара, находя по ним для одних и тех же удельных объемов пара соот­ветствующие значения s и Т. На рис. 3. показана схематически и без изохор диаграмма h-S, построен­ная от начала координат. Поскольку диаграммой h-S пользуются при тепловых расчетах, в которых пользо­ваться частью диаграммы, охватывающей область сильно влажного пара (х < 0,5) не приходится, для практических целей обычно левую нижнюю часть при построении диаграммы от­брасывают.

    Изображенная на рис. 4. изобара О-С, соответствующая давле­нию в тройной точке, проходит через начало координат под наименьшим наклоном и снизу ограничивает область влажного пара. Область диаг­раммы, расположенная под этой изобарой, соответствует различным со­стояниям смеси пара и льда; область, расположенная между изобарой О-С и пограничными кривыми, - различным состояниям влажного на­сыщенного пара; область над верхней пограничной кривой – состояниям перегретого пара и область над нижней пограничной кривой состояниям воды.

    T-S-, P-v- и h-s-диаграммы состояния водяного пара применяются в инженерных расчетах паросиловых установок, паровых турбин.

    Паросиловая установка (ПСУ) предназначена для выработки пара и эл.энергии. ПСУ представляют циклом Ренкина. На диаграмме p-v и T-S этот цикл представлен на (рис.5и6) соответственно.

    1-2 – адиабатное расширение пара в паровой турбине до давления в конденсаторе p 2 ;

    2-2 " – конденсация пара в конденсаторе, отвод тепла при p 2 = const.

    Т.к. при давлениях, применяемых обычно в теплотехнике, изменением объема воды при её сжатии можно пренебречь, то процесс адиабатического сжатия воды в насосе происходит практически при постоянном объеме воды и может быть представлен изохорой 2 " -3.

    3-4 – процесс нагревания воды в котле при p 1 = const до температуры кипения;

    4-5 – парообразование;5-1 – перегрев пара в пароперегревателе.

    Процессы нагревания воды до кипения и парообразование происходят при постоянном давлении (P = const, T = const) .Поскольку процессы подвода и отвода теплоты в рассмотренном цикле осуществляется по изобарам, а в изобарном процессе количество подведенной (отведенной) теплоты = разности энтальпий раб.тела в начале и конце процесса:

    h 1 – энтальпия перегретого пара на выходе из котла; h 4 – энтальпия воды на входе в котел;

    h 2 – энтальпия влажного пара на выходе из турбины; h 3 – энтальпия конденсата на выходе из конденсатора.

    Процесс расширения пара турбинной установки удобно рассматривать в h-S диаграмме.

    В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их.

    Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

    1. Изохорический процесс . Закон Шарля. V = const.

    Изохорическим процессом называется процесс, протекающий при постоянном объёме V . Поведение газа при этом изохорическом процессе подчиняется закону Шарля :

    При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

    График изохорического процесса на РV -диаграмме называется изохорой . Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры:

    Где Р 0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град -1 . График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7.


    Рис. 1.7

    2. Изобарический процесс. Закон Гей-Люссака. Р = const.

    Изобарическим процессом называется процесс, протекающий при постоянном давлении Р . Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака :

    При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

    График изобарического процесса на VT -диаграмме называется изобарой . Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8).


    Рис. 1.8

    Уравнение изобары:

    Где α =1/273 град -1 - температурный коэффициент объёмного расширения . График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.


    Рис. 1.9

    3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

    Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

    Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

    При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

    График изотермического процесса на РV -диаграмме называется изотермой . Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10).


    Рис. 1.10

    Уравнение изотермы:

    (1.4.5)

    4. Адиабатический процесс (изоэнтропийный):

    Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

    5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

    6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится N A =6,02·10 23 молекул (число Авогадро).

    7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

    (1.4.6)

    Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.

    При , давление смеси газов.

    ТЕМА №1

    Техническая термодинамика.

    1.Основные понятия и определения.

    Термодинамика изучает законы превращения энергии в различных процессах, происходящих в макроскопических системах, и сопровождается тепловыми эффектами (макроскопическая система- это объект, который состоит из большого числа частиц). Техническая термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свойства тел, участвующих при этом вращении.

    Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники.

    Термодинамическая система представляет собой совокупность материальных тел, находящихся в механическом и тепловом взаимодействии друг с другом и с окружающим систему внешними телами (внешней средой).

    Сведения по физике

    Основные параметры: температура, давление и удельный объем.

    Под температурой понимают физическую величину, характеризующую степень нагретости тела. Применяют 2 температурные шкалы: термодинамическую Т(°К) и международную практическую t (°С). Соотношение между Т и t определяется по значениям тройной точки воды:

    Т= t(°С)+273,15

    Тройная точка воды – состояние, при котором твердое, жидкое и газообразное фазы находятся в равновесии.

    За единицу давления принимается Паскаль (Па) данная единица очень мала, поэтому используют большие величины кПа, МПа. А также внесистемные единицы измерения – техническая атмосфера и миллиметры ртутного столба. (мм.рт.ст.)

    Рн =760мм.рт.ст.=101325 Па=101,325 кПа = 0,1 МПА=1кг/см

    Основные параметры состояния газа связаны между собой уравнением:

    Уравнение Клайперона 1834г.

    R- Удельная газовая постоянная.

    Умножив левую и правую части на m, получим уравнение Менделеева, Клайперона, где m- молекулярная масса вещества:

    Значение произведения m× R называют универсальной газовой постоянной, её выражение определяется из формулы:

    При нормальных физических условиях: Дж/(Кмоль*К).

    Где m×Vн=22,4136 /Кмоль - молярный объем идеального газа при нормальных физических условиях.

    Удельная газовая постоянная R- это работа, затраченная на нагревание 1 кг вещества на 1 К при постоянном давлении

    Если все термодинамические параметры постоянны во времени и одинаковы во всех точках системы, то такое состояние системы называется равновесным. Если между различными точками в системе существуют разности температур, давлений и других параметров, то она является неравновесной. В такой системе под действием градиентов параметров возникают потоки теплоты, вещества и другие, стремящиеся вернуть её в состояние равновесия. Опыт показывает, что изолированная система с течением времени всегда приходит в состояние равновесия и никогда самопроизвольно выйти из него не может. В классической термодинамике рассматривается только равновесные системы т.е.:



    В реальных газах, в отличие от идеальных, существуют силы межмолекулярных взаимодействий (силы притяжений, когда молекулы находятся на значительном расстоянии и силы отталкивания, когда молекулы отталкиваются). И нельзя пренебречь собственным объемом молекул. Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, которое называется уравнением состояния.

    Опыт показывает, что удельный объем, температура и давление простейших систем, которыми являются газы, пары или жидкости связаны термическим уравнением состояния вида:

    Уравнения состояния реальных газов.

    Наличие межмолекулярных сил отталкивания приводят к тому, что молекулы могут сближаться между собой до некоторого минимального расстояния. Поэтому можно считать, что свободные для движения молекул, объем будет равен:

    где b- тот наименьший объем, до которого можно сжать газ.

    В соответствии с этим длина свободного пробега уменьшается и число ударов о стенку в единицу времени, а следовательно давление увеличивается.

    , ,

    Возникает молекулярное (внутреннее) давление.

    Сила молекулярного притяжения каких-либо 2 малых частей газа пропорциональна произведению числа молекул в каждой из этих частей, т.е. квадрату плотности, поэтому молекулярное давление обратнопропорционально квадрату удельного объема газов: Рмол £

    Где а - коэффициент пропорциональности, зависящий от природы газов.

    Отсюда уравнение Ван-дер-Ваальса (1873г.)



    При больших удельных объемах и сравнительно невысоких давлениях реального газа уравнение Ван-дер-Ваальса практически выражается в уравнение состояния идеального газа Клайперона. Ибо величина (по равнению с Р) и b по сравнению с u становятся пренебрежимо малыми.

    Внутренняя энергия.

    Известно, что молекулы газа в процессе хаотичного движения обладают кинетической энергией и потенциальной энергией взаимодействия, поэтому под влиянием энергии (U) понимается вся энергия, заключенная в теле или системе тел. Внутреннюю кинетическую энергию можно представить в виде кинетической энергии поступательного движения, вращательного и колебательно движения частиц. Внутренняя энергия является функцией состояния рабочего тела. Её можно представить в виде функции двух независимых переменных:

    U=f(p,v); U=f(p,T); U=f(U,T);

    В термодинамических процессах изменяемая внутренняя энергия не зависит от характера процесса. И определяется начальным и конечным состоянием тела:

    DU=U2 –U1=f(p2 v2T2)-f(p1 v1 T1);

    где U2- значение внутренней энергии в конце процесса;

    U1 – значение внутренней энергии в начальном состоянии;

    При Т=const.

    Джоуль в своих исследованиях для идеального газа сделал вывод, что внутренняя энергия газ зависит только от температуры: U=f(T);

    В практических расчетах определяется не абсолютное значение энергии а ее изменения:

    Работа газа.

    Сжатие газа в цилиндре

    При повышенном давлении газ, находящийся в цилиндре стремиться расширяться. На поршень действует сила G. При подводе теплоты (Q) поршень переместиться в верхнее положение на расстояние S. При этом газ совершит работу расширения. Если принять давление на поршень P, а площадь поперечного сечения поршня F, то совершаемая газом работа:

    Учитывая, что F×S- изменение объема, который занимает газ можно записать, что:

    а в дифференциальной форме: ;

    Удельная работа расширения 1 кг газа после конечного изменения объема:

    Изменение dl, dv всегда имеют одинаковые знаки, т.е. если dv>0, тогда имеет место работа расширения против внешних сил и она в этом случае положительная. При сжатии газа Du<0 работа совершается над газом внешними силами, поэтому она отрицательная.

    Рис.- процесс расширения в диаграмме ПВ.

    Заштрихованная площадь выражает величину совершаемой работы:

    ; ;

    Таким образом, механическое взаимодействие между термодинамической системой и окружающей средой зависит от двух параметров состояния- давления и объема. Работа измеряется в Джоулях. Поэтому в качестве работы тел, предназначенных для преобразования тепловой энергии в механическую, нужно выбирать такие, которые способны значительно расширять свой объем в ДВС. Газообразные продукты сгорания различных видов топлива.

    Теплота

    Теплота может предаваться на расстоянии (излучением) и непосредственным соприкосновением между телами. Например, теплопроводностью и конвективным теплообменом. Необходимым условием передачи теплоты является разность температур между телами. Теплота это энергия, которая передается от одного тела к другому при их непосредственном взаимодействии, которое зависит от температуры этих тел dg>0. Если dg<0 , то имеет место отвод теплоты.

    Первый закон термодинамики.

    Первый закон термодинамики является частным случаем общего закона сохранения энергии: «Энергия не создается из ничего и не исчезает бесследно, а превращается из одной формы в другую в строго определенных количествах» (Ломоносов).

    В результате подвода теплоты тело нагревается (dt>0) и увеличивается его объем, поэтому увеличение объема связано с наличием внешней работы:

    Или Q=DU+ L

    Где Q- общее количество тепла, приведенного к системе.

    DU- изменение внутренней энергии.

    L- работа, направленная на изменение объема термодинамической системы.

    Теплота, сообщаемая термодинамической системе идет на увеличение внутренней энергии и на совершение внешней работы.

    Первый закон:

    «невозможно создать машину производящую работу без того чтобы эквивалентное количество энергии другого вида не исчезала» (Вечный двигатель первого рода)

    То есть невозможно построить двигатель, который вырабатывал бы энергию из ничего. Иначе вырабатывал бы энергия не потребляя при этом какую-либо другую энергию.

    Теплоемкость.

    Для того чтобы повысить температуру любого вещества, необходимо подвести определенное количество теплоты. Выражение истинной теплоемкости:

    Где - элементарное количество теплоты.

    dt – соответствующие изменения температуры вещества в данном процессе.

    Выражение показывает удельную теплоемкость, то есть количество теплоты необходимое подвести единице количества вещества для нагревания его на 1 К (или 1 °С). Различают массовую теплоёмкость (С) отнесенную к 1 кг. Вещества, необходимую (С’) отнесенную к 1 вещества и киломольную (mС) отнесенную к 1 кмолю.

    Удельная теплоемкость – это отношение теплоемкость тела к его массе:

    ; - объемная.

    Процессы с подводом теплоты при постоянном давлении называется изобарными, а с подводом теплоты при постоянном объеме – изохорным.

    При теплотехнических расчетах в зависимости от процессов теплоемкости получают соответствующие названия:

    Сv- изохорная теплоемкость,

    Ср- изобарная теплоемкость.

    Теплоемкость при изобарном процессе (p=const)

    ,

    При изохорном процессе:

    Уравнение Майера :

    Ср-Сv=R - показывает связь между изобарным и изохорным процессами.

    В процессах V=const работа не совершается а полностью расходуется на изменение внутренней энергии dq=dU , при изобарном подворье теплоты имеет месть увеличение внутренней энергии и совершение работы против внешних сил, поэтому изобарная теплоемкость Ср всегда больше изохорной на величину газовой постоянной R.

    Энтальпия

    В термодинамике важную роль играет сумма внутренней энергии системы U и произведения давления системы р на её объем V, называемая энтальпией и обозначается Н.

    Т.к. входящие в нее величины являются функциями состояния, то и сама энтальпия является функцией состояния, также как и внутренняя энергия, работа и теплота она измеряется в Дж.

    Удельная энтальпия h=H/M представляет собой энтальпию системы, содержащей 1 кг вещества, и измеряется в Дж/кг. Изменение энтальпии в любом процессе определяется только начальным и конечным состояниями тела и не зависит от характер процесса.

    Физический смысл энтальпии выясним на примере:

    Рассмотрим расширенную систему, включающую газ в цилиндре и поршень с грузом, общим весом G. Энергия этой системы складывается из внутренней энергии газа и потенциальной энергии поршня с грузом.

    В условиях равновесия G=pF эту функцию можно выразить через параметры газа:

    Получаем, что ЕºН, т.е. энтальпию можно трактовать как энергию расширенной системы. Если давление системы сохраняется независимым, т.е. осуществляется изобарный процесс dp=0, то q P = h 2 - h 1 , т.е. теплота, подведенная к системе при постоянном давлении, идет только на измерение энтальпии данной системы. Это выражение очень часто используется в расчетах, так как огромное количество процессов подводов теплоты в термодинамике (в паровых котлах, камерах сгорания газовых турбин и реактивных двигателей, теплообменных аппаратах) осуществляется при постоянном давлении. При расчетах практический интерес представляет изменение энтальпии в конечном процессе:

    ;

    Энтропия

    Название энтропия происходит от греческого слова «энтропос»- что означает превращение, обозначается буквой S, измеряется [Дж/К], а удельная энтропия [Дж/кг×К]. В технической термодинамике является функцией, которая характеризует состояние рабочего тела, следовательно является функцией состояния: ,

    где - полный дифференциал некоторой функции состояния.

    Формула применима для определения изменения энтропии, как идеальных газов, так и реальных может быть представлен в виде зависимости от параметров:

    Это означает, что элементарное количество подведенной (отведенной) удельной теплоты в равновесных процессах равно произведению термодинамической температуры на изменение удельной энтропии.

    Понятие энтропии позволяет ввести чрезвычайно удобную для термодинамических расчетов TS - диаграмму, на которой, как и на PV- диаграмме состояние термодинамической системы изображается точкой, а равновесный термодинамический процесс линией

    Dq - Элементарное количество теплоты.

    Очевидно, что в TS-диаграмме элементарная теплота процесса изображается элементарной площадкой с высотой Т и основанием dS, а площадь, ограниченная линиями процесса, крайними ординатами и осью абсцисс, эквивалентна теплоте процесса.

    Если Dq>0, то dS>0

    Если Dq<0, то dS<0 (отвод теплоты).

    Термодинамические процессы

    Основные процессы:

    1. Изохорный – протекает при постоянном объеме.

    2. Изобарный - протекает при постоянном давлении.

    3. Изотермический - протекает при постоянной температуре.

    4. Адиабатный – процесс, при котором отсутствует теплообмен с окружающей средой.

    5. Политропный - процесс, удовлетворяющий уравнению

    Метод исследования процессов, не зависящий от их особенностей и являющейся общим состоит в следующем:

    1. Выводится уравнением процесса, устанавливающего связь между начальным и конечным параметрами рабочего тела в данном процессе.

    2. Вычисляется работа изменения объема газа.

    3. Определяется количество теплоты, подведенной или отведенной газу в процессе.

    4. Определяется изменение внутренней энергии системы в процессе.

    5. Определяется изменения энтропии системы в процессе.

    а) Изохорный процесс.

    Выполняется условие: dV=0 V=const.

    Из уравнения состояния идеального газа следует, что P/T = R/V = const, т.е. давление газ прямопропорционально его абсолютной температуре p 2 /p 1 = T 2 /T 1

    Работа, расширенная в этом процессе равна 0.

    Количество теплоты ;

    Изменение энтропии в изохорном процессе определяется по формуле:

    ; т.е.

    Зависимость энтропии от температуры на изохоре при Сv = const имеет логарифмический характер изменения.

    б) изобарный процесс p=const

    из уравнения состояния идеального газа при p=const, находим

    V/T=R/p=const V2/V1=T2/T1, т.е. в изобарном процессе объем газа пропорционален его абсолютной температуре

    Количество теплоты находим из формулы:

    Изменение энтропии при Сp=const:

    , т.е.

    температурная зависимость энтропии при изобарном процессе тоже имеет логарифмических характер, но поскольку Ср > Сv, то изобара в TS- диаграмме идет более полого, чем в изохоре.

    в) Изотермический процесс.

    При изотермическом процессе: pV=RT=const p 2 /p 1 =V 1 /V 2 , т.е. давление объем обратно пропорциональны друг другу, так что при изотермическом сжатие давление газа возрастает, а при расширении падает (закон Бойля-Мариотта)

    Работа процесса: ;

    Так как температура не меняется, то внутренняя энергия идеального газа в данном процессе остается постоянной: DU=0 и вся подводимая к газу теплота полностью превращается в работу расширения q=l.

    При изотермическом сжатии от газа отводится теплота в количестве равном затраченной на сжатии работе.

    Изменение энтропии: .

    г) Адиабатный процесс.

    Процесс, происходящий без теплообмена с окружающей средой, т.е. D q=0.

    Чтобы осуществить процесс нужно либо теплоизолировать газ, либо провести процесс настолько быстро, чтобы изменения температуры газа, обусловленные его теплообменом с окружающей средой, было пренебрежимо мало по сравнению с изменением температуры, вызванным расширением или сжатием газа.

    Уравнение адиабаты идеального газа при постоянном отношении теплоемкости:

    p 1 ∙ ν 1 k = p 2 ∙ ν 2 k

    k = C P / C V - показатель адиабаты.

    k- определяется числом степеней свободы молекулы.

    Для одноатомных газов к=1,66.

    Для двухатомных газов к=1,4.

    Для трехатомных газов к=1,33.

    ;

    В данном процессе теплообмен газа с окружающей средой исключается, поэтому q=0, поскольку при адиабатном процессе элементарное количество теплоты D q=0, энтропия рабочего тела не изменяется dS=0; S=const.

    Политропный процесс.

    Любой произвольный процесс можно описать в pV- координатах (по крайней мере на небольшом участке.)

    pν n = const, подбирая соответствующее значение n.

    Процесс, описываемый таким уравнением называется политропным, показатель политропы n может принимать любое значение (+µ ;-µ), но для данного процесса он является величиной постоянной.

    Политропные процессы идеального газа.

    Где: 1. изобара.

    2. изотерма.

    3. адиабата.

    4. изохора.

    Теплота процесса: ;

    где - массовая теплоемкость политропного процесса.

    Изохора n=±µ делит поле диаграммы на 2 области: Процессы, находящиеся правее изохор характеризуются положительной работой, т.к. сопровождаются расширением рабочего тела; для процессов, расположенных левее изохоры характерна отрицательная работа. Процессы расположенные правее и выше адиабаты идут с подводом теплоты к рабочему телу; процессы лежащие левее и ниже адиабаты протекают с отводом теплоты.

    Для процессов расположенных над изотермой (n=1) характерно увеличение внутренней энергии газа. Процессы, расположенные под изотермой сопровождаются уменьшением внутренней энергией. Процессы, расположенные между адиабатой и изотермой имеют отрицательную теплоемкость.

    Водяной пар.

    Пар над жидкостью, имеющей туже температуру, что и кипящая вода, но существенно больший объем называется насыщенным.

    Сухой насыщенный пар - пар, не содержащий капелек жидкости и получающийся в результате законченного парообразования. Пар, содержащий влагу, называется влажным.

    Влажный, насыщенный пар - смесь сухого насыщенного пара с мельчайшими капельками воды, взвешенными в его массе.

    Пар, имеющий температуру более высокую, чем температура насыщения при том же давлении называется насыщенным или перегретым паром.

    Степень сухости насыщенного пара (паросодержания)- это масса сухого пара в 1 кг. Влажного (Х);

    где Мсп- масса сухого пара.

    Мвп- масса влажного пара.

    Для кипящей воды Х=0. Для сухого насыщенного пара Х=1.

    Второй закон термодинамики

    Закон определяет направление, в котором протекают процессы и устанавливаются условия преобразования тепловой энергии в механическую.

    Все без исключения тепловые двигатели должны иметь горячий источник теплоты, рабочее тело, совершающее замкнутый процесс- цикл и холодный источник теплоты:

    Где dS-полный дифференциал энтропии системы.

    dQ- количество теплоты, полученной системой от источника тепла, при бесконечно малом процессе.

    Т- абсолютная температура источника теплоты.

    При бесконечно малом изменении состояния термодинамической системы, изменение энтропии системы определяется вышеназванной формулой, где знак равенства относится к обратимым процессам, знак больше к необратимым.

    Истечение газа из сопла.

    Рассмотрим сосуд в котором находится газ массой 1 кг, создаем давление Р1>Р2, учитывая что сечение на входе f1 >f2 , запишем выражение для определения работы адиабатного расширения. Будем считать m (кг/с) массовый расход газа.

    С- скорость истечения газа м/с.

    v- удельный объем.

    f- площадь сечения.

    Объемный расход газа:

    Считая процесс истечения газа адиабатным dq=0.

    Полная работа истечения газа из сопла равна:

    lp- работа расширения.

    l- работа проталкивания.

    Работа адиабатного расширения равна:

    ;

    Где к- показатель адиабаты.

    Так как l= p2v2 – p1v1

    Полная работа расходуется на приращение кинетической энергии газа, при его движении в сопле, поэтому её можно выразить через приращение этой энергии.

    Где с1, с2 – скорости потока на входе и выходе из сопла.

    Если с2 >с1, то ,

    Скорости являются теоретическими, так как не учитывают потери при движении в сопле.

    Действительная скорость всегда меньше теоретической.

    Истечение паров

    Получение ранее формулы полной работы справедливы лишь для идеального газа с постоянной теплоемкостью скорость истечения паров. Скорость истечения паров определяют с помощью iS- диаграмм или таблиц.

    При адиабатном расширении работа пара определяется по формуле:

    Ln - удельная работа.

    i1-i2 - энтальпия пара на выходе из сопла.

    Скорость и течение пара определяется:

    ,

    где j=0,93¸0,98; i1-i2=h – теплоперепад l=h;

    1-2g-действительный процесс расширения пара (политропный)

    hg= i1-i2g - действительный теплоперепад.

    В действительности процесс истечения пара из сопла не является адиабатным. Из-за трения потока пара о стенки сопла, без возвратно теряется часть его энергии. Действительный процесс протекает по линии 1-2g-поэтому действительный теплоперепад меньше теоретического в результате чего действительная скорость истечения пара несколько меньше теоретической.

    Паротурбинная установка.

    Простейшая паротурбинная установка.

    Г- генератор.

    1- паровой котел.

    2- пароперегреватель.

    3- паровая турбина.

    4- конденсатор.

    5- питательный насос.

    Установки находят широкое применение в теплоэнергетике народного хозяйства. Рабочее тело- водяной пар.

    Регенеративный цикл.

    Практический подогрев питательной воды в схеме производится паром, отбираемым из турбины, такой подогрев называется регенеративным . Он может быть одноступенчатым, когда подогрев осуществляется паром 1-ого давления, или многоступенчатым, если подогрев производится последовательно паром различных давлений, отбираемым из различных точек (ступеней) турбины. Перегретый пар поступает из перегревателя 2 в турбину 3 после расширения в ней часть пара отбирается из турбины и направляется в первый по ходу пара подогреватель 8, остальная часть пара продолжает расширяться в турбине. Далее пар отводится во второй подогреватель 6, остающееся количество пара после дальнейшего расширения в турбине поступает в конденсатор 4. Конденсат из конденсатора насосом 5 подается во второй подогреватель, где подогревается паром, затем насосом 7 подается в первый подогреватель, после чего насосом 9 подается в котел 1.

    Термический КПД регенеративного цикла увеличивается с числом отбора пара, однако увеличение количества отборов связано с усложнением и удорожанием установки, поэтому число отборов обычно не превышает 7-9. КПД цикла примерно составляет 10-12 % с увеличением числа отборов.

    Теплофикационный цикл.

    В паросиловых установках охлаждающая вода имеет температуру выше температуры окружающей среды. И выбрасывается в водоем, при этом теряется около 40 % подведенного тепла. Более рациональными являются установки, в которых часть тепловой энергии используется в турбогенераторах для выработки электроэнергии, а другая часть идет на нужды тепловых потребителей. Тепловые станции, работающие по такой схеме, называются Тепло Электроцентралями (ТЭЦ).

    Цикл ТЭЦ: охлаждающая вода, нагретая в конденсаторе, не выбрасывается в водоем, а прогоняется через отопительные системы помещений, отдавая в них тепло и охлаждаясь одновременно. Температура горячей воды для целей отопления должна быть не менее 70-100°С. А температура пара в конденсаторе должна быть на 10-15 °С выше. Коэффициент использования тепла в теплофикационном цикле составляет 75-80%. В не теплофикационных установках около 50%. При этом повышается экономичность и КПД. Что позволяет экономить ежегодно до 15% всего расходуемого тепла.

    ТЕМА №2

    Основы теплопередачи.

    Теплопередача - это процесс переноса теплоты от одного теплоносителя к другому через разделяющую стенку. Сложный процесс переноса теплоты разбивают на ряд наиболее простых, такой прием облегчает его изучение. Каждый простой в процессе переноса теплоты подчиняется своим законом.

    Существуют 3 простейших способа передачи теплоты:

    1. Теплопроводность;

    2. Конвекция;

    3. Излучение.

    Явление теплопроводности состоит в переносе теплоты микрочастицами (молекулами, атомами, электронами и т.д.) такой теплообмен может происходить в любых телах с неоднородным распределением температур.

    Конвективный теплоперенос (конвекция ) наблюдается лишь в жидкостях и газах.

    Конвекция - это перенос теплоты с макроскопическими обменами веществ. Конвекцией можно передавать теплоту на очень большие расстояния (при движении газа по трубам). Движущаяся среда (жидкость или газ), используются для переноса теплоты, называется теплоносителем . За счет излучения теплота передается во всех лучепрозрачных средах, в том числе и в вакууме. Носителями энергии при теплообмене излучением является фотоны, излучаемые и поглощаемые телами, участвующими в теплообмене.

    ПРИМЕР: осуществление нескольких способов одновременно: Конвективная теплопередача от газа к стенке практически всегда сопровождается параллельным переносом теплоты излучения.

    Основные понятия и определения.

    Интенсивность переноса теплоты характеризуется плотностью теплового потока.

    Плотность теплового потока - количество теплоты, передаваемое в единицу времени через единичную плотность поверхности q, Вт/м2.

    Мощность теплового потока - (или тепловой поток)- количество теплоты, передаваемая в единицу времени через производную поверхность F

    Перенос теплоты зависит от распределения температуры во всех точках тела или системы тел в данный момент времени. Математическое описание температурного тела имеет вид:

    где t- температура.

    x,y,z- пространственные координаты.

    Температурное поле, описываемое приведенным уравнением, называется нестационарным . В этом случае температура зависит от времени. Если распределение температуры в теле не изменяется со временем, температурное поле называется стационарным.

    Если температура изменяется только по одной или двум пространственным координатам, то температурное поле называется одно или двухмерным.

    Поверхность, во всех точках которой температура одинакова называется изотермической. Изотермические поверхности могут быть замкнутыми, но не могут пересекаться. Быстрее всего температура изменяется при движении в направлении перпендикулярном изотермической поверхности.

    Скорость изменения температуры по нормали изотермической поверхности характеризуется градиент температуры.

    Градиент температуры grad t – есть вектор, направленный по нормали к изотермической поверхности и численно равный производной от температуры по этому направлению:

    ,

    n0 – единичный вектор, направленный в сторону возрастания температур, нормально к изотермической поверхности.

    Температурный градиент является вектором положительное положение которого совпадает с увеличением температур.

    Однослойная плоская стенка.

    Где δ – толщина стенки.

    tст1,tст2- температура поверхности стенки.

    tст1>tст2

    Тепловой поток в соответствии с законом Фурье вычисляется по формуле:

    Где Rл=δ/ λ.- внутреннее термическое сопротивление теплопроводности стенки.

    Распределение температуры в плоской однородной стенке линейное. Значение λ находят в справочниках при

    tср =0,5(tст1+tст2).

    Тепловой поток (мощность теплового потока) определяется по формуле:

    .

    ТЕМА №3

    Конвективный теплообмен.

    Жидкие и газообразные теплоносители нагреваются или охлаждаются при соприкосновении с поверхностями твердых тел.

    Процесс теплообмена между поверхностью твердого тела и жидкостью называется теплопередачей , а поверхность тела через которую переносится теплота поверхностью теплообмена или теплоотдающей поверхностью.

    Согласно закону Ньютона – Рихмана тепловой поток в процессе теплоотдачи пропорционален площади поверхности теплообмена F и разности температур поверхности tст и жидкостиtж.

    В процессе теплоотдачи независимо от направления теплового потока Q(от стенки к жидкости или наоборот) значение его можно считать положительным, поэтому разность tст -берут по модулю.

    Коэффициент пропорциональности α называется коэффициентом теплоотдачи, его единица измерения (). Он характеризует интенсивность процесса теплоотдачи. Коэффициент теплоотдачи обычно определяют экспериментально (по формуле Ньютона - Рихмана) при измеренных остальных величинах

    Коэффициент пропорциональности α зависит от физических свойств жидкости и характера её движения. Различают естественное и вынужденное движение (конвекцию) жидкости. Вынужденное движение создается внешним источником (насосом, вентилятором). Естественная конвекция возникает за счет теплового расширения жидкости, нагретой около теплоотдающей поверхности в самом процессе теплообмена. Она будет тем сильнее, чем больше разность температур tст -и температурный коэффициент объемного расширения.

    Факторы (условия):

    1. Физические свойства жидкости или газов (вязкость, плотность, теплопроводность, теплоемкость)

    2. Скорость движения жидкости или газа.

    3. Характер движение жидкости или газа.

    4. Форма омываемой поверхности.

    5. Степень шероховатости поверхности.

    Числа подобия

    Так как коэффициент теплоотдачи зависит от многих параметров, то при экспериментальном исследовании конвективного теплообмена нужно уменьшить их число, согласно теории подобия. Для этого их объединяют в меньшее число переменных, называемых числами подобия (они безразмерны). Каждое из них имеет определенный физический смысл.

    Число Нуссельта Nu=α·l/λ.

    α- коэффициент теплоотдачи.

    λ- коэффициент теплопроводности.

    Представляет собой безразмерный коэффициент теплоотдачи, характеризует теплоотдачу на границе жидкости или газа со стенкой.

    Число Рейнольдса Re=Wж·l /ν.

    Где Wж- скорость движения жидкости (газа). (м/с)

    ν- кинематическая вязкости жидкости.

    Определяет характер потока.

    Число Прандтля Pr=c·ρν/λ .

    Где с - теплоемкость.

    ρ – плотность жидкости или газа.

    Состоит из величин, характеризующих теплофизические свойства вещества, и по существу само является теплофизической константой вещества.

    Число Грасгофа

    β- коэффициент объемного расширения жидкости или газа.

    Характеризует отношение подъемной силы, возникающей вследствие теплового расширения жидкости, к силам вязкости.

    Лучистый теплообмен.

    Тепловое излучение – есть результат превращения внутренней энергии тел в энергию электромагнитных колебаний. Тепловое излучение как процесс распространения электромагнитных волн характеризуется длино